金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高一数学课件-等比数列课件

来源:学大教育     时间:2016-02-27 10:57:04


高中数学课件对我们学习数学知识有很大的帮助,能够让我们知道学习的重点,这样大家在学习的时候就能做到有的放矢了,下面学大教育网为大家带来高一数学课件-等比数列课件,供大家阅读和参考,希望能对大家有帮助。

教学分析:

数列是高中数学内容重要的内容之一,等比数列与等差数列在内容上是完全平行的,包括定义、性质、通项公式等.在教学时充分利用类比的方法,归纳出等比数列的定义,导出通项公式,最后是通项公式的简单应用.

等比数列概念的引入,给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特征,加深对概念的理解.

再者,给出几个具体示例,让学生感受等比数列通项公式的应用范围,从而进一步加深对公式的理解.

最后,通过学生练习的方式,让学生把知识内化为自己的认知,从而达到教学的真正目的.

本节课还渗透了一些数学思想方法,比如类比思想、归纳思想、一般到特殊的思想等.,在教学中要充分体现这些重要的数学思想方法.

三维目标:

1.通过实例,理解等比数列的概念;搜索并掌握等比数列的通项公式、性质,能在具体问题情境中,发现数列的等比关系,提高数学建摸能力.

2.通过现实生活中大量存在的数列模型,让学生充分感受到数列是反映现实生活的模型,体会数学是丰富多彩的而不是枯燥乏味的,达到提高学生学习兴趣的目的.

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的精神,严谨的科学态度.体会探究过程中的主体作用及探究问题的方法,经历解决问题的全过程.

教学重点:

掌握等比数列的定义;理解等比数列的通项公式及推导.

教学难点:

灵活应用等比数列的定义及通项公式解决相关问题,在具体问题中抽象出等比数列模型及掌握重要的数学思想方法.

教学方法:

讲练结合法、讨论法

教学用具:

多媒体教学

教学过程:

一 导入新课

1.一位数学家曾经说过:你如果能将一张报纸对折38次,我就能顺着它在今晚爬上月球,将一张报纸对折会有那么大的高度吗?

2.给我一张纸,我能把它折成五层大楼那么高(假设我的力气是足够大的), 这可能吗?

通过两个实例引入新课,使学生对数学产生兴趣,让他们带着疑问来学习本节内容.

二 讲授新课

1.某种细胞分裂的个数可以组成下面的数列:1,2,4,8, …

2.我国古代一些学者提出:”一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完.这样,每日剩下的部分都是前一日的一半,如果把”一尺之棰”看作单位”1”,那么得到的数列是1,1/2,1/4,1/8,…

3. 一种计算机病毒可以查找计算机中的地址簿,通过邮件进行传播.如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是:1,20,202,203,…

4. 银行支付利息的方式---复利.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的”利滚利”.按照复利的计算本利和的公式是

本利和=本金×(1+利率)存期,例如,现在存入银行10000元钱,年利率是1.98% ,那么按照复利,5年内各年末得到的本利和分别是10000×1.0198, 10000×1.01982, 10000×1.01983,10000×1.01984,10000×1.01985,…

观察:上面的数列(1) (2) (3) (4)有什么共同特点?

可以发现:

对于数列(1),从第2项起,每一项与前一项的比都等于____

对于数列(2),从第2项起,每一项与前一项的比都等于____

对于数列(3),从第2项起,每一项与前一项的比都等于____

对于数列(4),从第2项起,每一项与前一项的比都等于____

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(指与n无关的数) ,那么这个数列就叫作等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)

判定下列数列是否可能是等比数列?

1. 1,1, 2,4,8;

2. 5,-25,125,- 625;

3.

接下来,推导等比数列的通项公式:

方法一: 递推法

方法二: 连乘法:

三.课堂练习

1.已知等比数列{ an }:

(1) an 能不能是零? (2)公比q能不能是1?

2.用下列方法表示的数列中能确定是等比数列的是 .

①已知a1=2,an=3an+1; ②1,2,4,……;

③a,a,a,……,a; ④1,-1,1,……,(-1)n+1;

⑤sin1,sin2,sin4,sin8,……,sin2n-1;

⑥2a,2a,2a,……,2a

3.什么样的数列既是等差数列又是等比数列?

上文就是学大教育网精心为大家准备的高一数学课件-等比数列课件,希望我们以上内容中获取知识,更多的数学课件内容请关注学大教育网。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956